Algebraic properties of structured context-free languages: old approaches and novel developments
نویسندگان
چکیده
The historical research line on the algebraic properties of structured CF languages initiated by McNaughton’s Parenthesis Languages has recently attracted much renewed interest with the Balanced Languages, the Visibly Pushdown Automata languages (VPDA), the Synchronized Languages, and the Height-deterministic ones. Such families preserve to a varying degree the basic algebraic properties of Regular languages: boolean closure, closure under reversal, under concatenation, and Kleene star. We prove that the VPDA family is strictly contained within the Floyd Grammars (FG) family historically known as operator precedence. Languages over the same precedence matrix are known to be closed under boolean operations, and are recognized by a machine whose pop or push operations on the stack are purely determined by terminal letters. We characterize VPDA’s as the subclass of FG having a peculiarly structured set of precedence relations, and balanced grammars as a further restricted case. The non-counting invariance property of FG has a direct implication for VPDA too.
منابع مشابه
A Operator precedence languages: an old family which joins two modern technologies
Regular languages (RL) are the simplest family in Chomsky’s hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Context-free languages (CFL) are another major family well-suited...
متن کاملGeneralizing input-driven languages: Theoretical and practical benefits
Regular languages (RL) are the simplest family in Chomsky’s hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages...
متن کاملAnalytic Models and Ambiguity of Context-Free Languages
We establish that several classical context-free languages are inherently ambiguous by proving that their counting generating functions, when considered as analytic functions, exhibit some characteristic form of transcendental behaviour. To that purpose, we survey some general results on elementary analytic properties and enumerative uses of algebraic functions in relation to formal languages. ...
متن کاملThe Chomsky-Schützenberger Theorem for Quantitative Context-Free Languages
Weighted automata model quantitative aspects of systems like the consumption of resources during executions. Traditionally, the weights are assumed to form the algebraic structure of a semiring, but recently also other weight computations like average have been considered. Here, we investigate quantitative context-free languages over very general weight structures incorporating all semirings, a...
متن کاملLogic Characterization of Invisibly Structured Languages: The Case of Floyd Languages
Operator precedence grammars define a classical Boolean and deterministic context-free language family (called Floyd languages or FLs). FLs have been shown to strictly include the well-known Visibly Pushdown Languages, and enjoy the same nice closure properties. In this paper we provide a complete characterization of FLs in terms of a suitable Monadic Second-Order Logic. Traditional approaches ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0907.2130 شماره
صفحات -
تاریخ انتشار 2009